BEYOND GLYCEMIC INDEX: NEW FOOD INSULIN INDEX

26 downloads 380 Views 257KB Size Report
Archway fat-free oatmeal raisin. • Cape Cod reduced fat ... Example: apple butter FII = 52. d f l d. Derived from reci
BEYOND GLYCEMIC INDEX: NEW FOOD INSULIN INDEX  Laura Sampson Kent* Mary Franz* Jennie Brand Miller** Walter Willett* *Department of Nutrition, Harvard School of Public Health **University of Sydney Acknowledgement: This research was funded by grant CA55075, National Cancer Institute, National Institutes of Health.

RELEVANCE OF INSULIN SECRETION • Prevention and management of weight gain • Hyperlipidemia  • Non‐insulin dependent diabetes mellitus (NIDDM) • Long‐term exposure to high insulin concentrations        may be associated with increased risk of cancer  y

WHAT IS FOOD INSULIN INDEX (FII)? WHAT IS FOOD INSULIN INDEX (FII)? Directly quantifies the postprandial insulin  Directly quantifies the postprandial insulin response to an isoenergetic portion of a  test food in comparison to a reference test food in comparison to a reference  food  Allows testing of foods with no or low Allows testing of foods with no or low  carbohydrate content FII has been shown to predict the relative  h b h d h l insulin demand evoked by mixed meals 

FOOD INSULIN INDEX (FII) FOOD INSULIN INDEX (FII) • Measures Measures blood insulin response to a food  blood insulin response to a food compared to a reference food glucose (FII=100) • Measures incremental insulin area under the  curve (AUC) over two hours in response to curve (AUC) over two hours in response to  consumption of a 1000 kJ portion of the test  food divided by the AUC after ingestion of a food divided by the AUC after ingestion of a  1000 kJ portion of the reference food

How is FII Different from Glycemic Index? How is FII Different from Glycemic Index? FOOD INSULIN INDEX FOOD INSULIN INDEX • Measures postprandial  increase in insulin secretion  of a whole food  • Dependent on  d carbohydrate, quantity and  quality of protein and fat  q y p and their interactions

GLYCEMIC INDEX GLYCEMIC INDEX • Measures effect of  carbohydrate‐containing  foods on postprandial  increase in blood‐glucose  levels levels  • GI is not always  proportional to the insulin  response

METHODS • APPROXIMATELY APPROXIMATELY 100 FOODS AND 16 CEREALS  100 FOODS AND 16 CEREALS WERE ANALYZED USING GLUCOSE AS THE  REFERENCE FOOD • 407 FOODS, 147 MARGARINES, 58 OILS, 111  CEREALS WERE IMPUTED USING VARIOUS  ALGORITHMS • 166 FOODS AND 89 CEREALS WERE RECIPE‐ DERIVED • 44 FOODS WERE ASSUMED TO BE 0

FOODS SENT TO UNIVERSITY OF SYDNEY FOODS SENT TO UNIVERSITY OF SYDNEY

MUFFIN MIXES READY‐MADE  READY MADE SWEET ROLL

• SunMaid honey raisin  bran muffin mix • Duncan Hines blueberry  D Hi bl b muffin mix • Krusteaz fat‐free  Kr stea fat free blueberry muffin mix • Entenmann cinnamon  Entenmann cinnamon buns

Cake Mix Cake Mix Pancake Mix Cookies

Chips p Candy Bars

• Betty Crocker golden cake w/  Betty Crocker choc frosting • Aunt Jemima pancake mix • Chips Ahoy regular chocolate chip  • Chips Ahoy reduced fat chocolate  Chips Ahoy reduced fat chocolate chip  • Archway fat‐free oatmeal raisin  • Cape Cod reduced fat potato  chips • Snickers candy bars • Hershey candy bars y y

U.S. Analyzed Cereals U.S. Analyzed Cereals CEREALS

• • • • • • • • • •

Cheerios Shredded Wheat Corn Flakes Quaker 100% Natural Cracklin Oat Bran L k Ch Lucky Charms Frosted Flakes Great Grains Great Grains Honey Bunches of Oats Wheaties

Matching U.S. Foods Purchased in Sydney Dairy • • • • • • • •

Cream cheese Low fat cheddar cheese Low fat processed cheese Low fat cottage cheese Low fat ice cream Sherbet 1% milk Butter

F it Fruits or fruit drinks f it d i k • • • • •

Peaches canned in juice Peaches canned in syrup Orange juice g j Prunes Punch

Cereals • •

Kashi 7 grain puffs K hi i ff Rice Bubbles

Meat, fish, mixed dishes • • • • • • •

Tacos Lasagna Roast chicken Shrimp Tofu Tuna in oil Tuna in oil Bacon

Miscellaneous items • • • • • • •

Olive oil Navy beans Raspberry jam Pretzels Walnuts Corn tortillas Jatz crackers (similar to Ritz)

Recipe‐derived Recipe derived FII Values  FII Values • Used analyzed foods as ingredients • Used ingredients that were imputed from  analyzed foods. y Example: apple butter                  FII = 52 Derived from recipe using apple, a.j., and  df l d sugar as ingredients (all analyzed foods)

IMPUTED OR CALCULATED FII VALUES IMPUTED OR CALCULATED FII VALUES FOODS Cereal grains, baked goods,  sweets and snack foods,  beverages fruits and dairy beverages, fruits, and dairy

CALCULATION Similar analyzed foods and a  carb/1000 kj adjustment carb/1000 kj imputed food x FII carb/1000 kj analyzed food

Breakfast cereals

Used analyzed cereals adjusting for  carbohydrate/amount

Meats, fish, and poultry

Directly from similar analyzed foods

IMPUTED FII VEGETABLE VALUES IMPUTED FII VEGETABLE VALUES VEGETABLES • NON STARCHY

CALCULATIONS Recipe from avocado using an  h2o ratio

• STARCHY

Recipe from potatoes or  carrots using fiber ratios carrots using fiber ratios

• PEAS and LIMA BEANS

Recipe from beans using an  fiber ratio

FII PUBLICATIONS FII PUBLICATIONS Bao J, de Jong , g V, Atkinson F, Petocz , , P, Brand‐Miller  , JC. Food insulin index: physiologic basis for  predicting insulin demand evoked by composite  meals Am J Clin Nutr 2009;90:986‐992. meals. Am J Clin 2009;90:986 992 Holt SH, Miller JC, & Petocz Holt SH Miller JC & Petocz P. An insulin index of foods:  P An insulin index of foods: the insulin demand generated by 1000‐kJ portions of  common foods. Am J Clin Nutr, 66:1264‐67; 1997.

RESULTS of the mixed meal study:  Group 1

A

M1

M7

Group 2

B

M8

M2 500

M9 500

M3

M10

Insulin (pmol/L)

M4 400

M5 M6

300

M11

400

M12 M13

300

White Bread

White Bread 200

200

100

100

0

0

0

15

30

45

Tim e (m in)

60

90

120

0

15

30

45

Tim e (m in)

Bao J et al. Am J Clin Nutr 2009;90:986-992.

60

90

120

RESULTS: Correlations A

140 Obse rved insulin respons se (Rela tive white bread =10 0)

r = 0.78, P = 0.0016 120 100 80 60 40 20 0 0 20 40 60 80 100 120 Insulin demand predicted by Food Insulin Index

RESULTS: Correlations B

140 Observe ed insulin n response e (Relativ ve white brread =100))

r = 0.53, P = 0.064 120 100 80 60 40 20 0 0

20

40

60

80

Available a ab e ca carbohydrate bo yd ate co content te t (g)

100

Highest versus Lowest FII Values Highest versus Lowest FII Values • Highest Highest analyzed FII analyzed FII Jelly Beans (120) Pancakes (112) Pancakes  (112) Honeydew Melon (95) Potatoes (90) Potatoes (90) Breakfast Cereals  (70‐113)

• Lowest Lowest analyzed FII analyzed FII Olive Oil (3) Avocado (5) Avocado (5) Walnuts (6) Tuna (16) Tuna (16) Chicken (20)

MEAN ANALYZED VS MEAN IMPUTED FII DATA

RE AL S

TS

KF AS T  CE

S OD  FO

SW EE BR EA

AR

CH Y

FR UI T ST

IR Y DA

N EI PR OT

NU TS  &  LE

GU M

ES

100 90 80 70 60 50 40 30 20 10 0

ANALYZED IMPUTED

LIMITATIONS ƒ Although Although imputed FII data are similar to  imputed FII data are similar to analyzed data, algorithms used for imputing  FII have not been validated. ƒ FII FII variability within some food groups  variability within some food groups complicates the assignment of imputed  values.  For example, analyzed FII for dairy  foods range from 18 for cream cheese to 86  for fruited yogurt.

CONCLUSION ƒ Most vegetables produce negligible insulin response,  g p g g p , as measured by FII. ƒ Even fats, and protein sources produce largely  variable insulin responses, as measured by FII. ƒ Imputed FII values track closely to analyzed values. ƒ Refined cereals, sweets, and potatoes produce the  greatest insulin response, as measured by FII.

DERIVED INSULIN LOAD DERIVED INSULIN LOAD Insulin Load, Glucose = (calories*FII)/100       • the individual average insulinogenic load  th i di id l i li i l d (IL) during the past year was estimated  f from FFQs by multiplying the FII of each  FFQ b lti l i th FII f h food by its energy content and the  consumption frequency and summing  ti f d i over all reported food items. 

DIETARY INSULIN INDEX, DII DIETARY INSULIN INDEX DII

The average dietary DII was  calculated by dividing the  average Insulin Load, IL, by the  I li L d IL b th total daily energy intake total daily energy intake.

RESULTS FROM COHORT STUDIES RESULTS FROM COHORT STUDIES MEN

WOMEN

• Median IL was 840 Median IL was 840 • Median IL was 677 Median IL was 677 • Median DII was 41.7  • Median DII was 42.7 

TOP 8 FOODS CONTRIBUTING TO IL TOP 8 FOODS CONTRIBUTING TO IL MEN

WOMEN

Cold Cereal (6.1%) Potatoes (5 7%) Potatoes (5.7%)  Dark Bread (4.4%) Skimmed Milk (3 2%) Skimmed Milk (3.2%)  Bananas (3.2%)  English Muffin (3 1%) English Muffin (3.1%)  White Bread (2.9%)  Orange Juice (2.8%) Orange Juice (2.8%) 

Mashed Potatoes (6.2%) Skimmed Milk (5 7%) Skimmed Milk (5.7%) Cold Cereal (5.3%) D k B d (4 6%) Dark Bread  (4.6%) Beef (3.6%) Y Yogurt (3.3%) (3 3%) White Bread (3.1%)  English Muffin (2.7%) 

TOP 4 FFQ ITEMS explaining the inter‐ individual variation of insulin load d d l f l l d MEN 49% LIQUOR  COLD CEREAL  BEER WINE

WOMEN 45% LIQUOR WINE YOGURT YOGURT  COLD CEREAL

COHORT STUDY RESULTS COHORT STUDY RESULTS In multivariate adjusted regression models, dietary II and IL were not  significantly associated with plasma C‐peptide. i ifi tl i t d ith l C tid Participants in the highest quintile of both II and IL had 26% higher  triacylglycerol concentrations than participants in the lowest triacylglycerol concentrations than participants in the lowest  quintile (ptrend