Understanding the radioactivity at Fukushima - KITP Talks

0 downloads 123 Views 5MB Size Report
Mar 15, 2011 - 8. 10. Different elements. Different isotopes. Hydrogen. Helium. Lithium. Beryllium. Boron. Ben Monreal,
Understanding the radioactivity at Fukushima A physics and engineering perspective

Prof. Ben Monreal UCSB Department of Physics Q&A Panel: Ben Monreal Prof. Theo Theofanous, UCSB Chem E. Prof. Patrick McCray, UCSB History Ben Monreal, UCSB Physics 3/11

• Introduction to radioactivity • Radiation hazards and health • What escapes in a meltdown? • Where does it go? • How worried should we be?

Ben Monreal, UCSB Physics 3/11

Chemistry Reference Sheet

Periodic Table of the Elements 1 1A 1 1

H

Hydrogen

1.01

3

2

Li

Beryllium

6.94

9.01

Na

Sodium

Magnesium

22.99

24.31

19 4

5

K

7

20

Ca

Atomic number Element symbol Element name

11

Na Sodium

22.99

3 3B 21

Sc

4 4B 22

5 5B 23

Ti

V

6 6B 24

7 7B 25

8 26

Cr

Mn

Fe

15 5A 7

16 6A 8

17 7A 9

Boron

Carbon

Nitrogen

Oxygen

Fluorine

Neon

10.81

12.01

14.01

16.00

19.00

20.18

14

15

16

9 8B 27

13

10 28

Co

Ni

11 1B 29

Al

C

Si

N P

O S

F

17

Cl

Helium

4.00

10

Ne 18

Ar

12 2B 30

Aluminum

Silicon

Phosphorus

Sulfur

Chlorine

Argon

26.98

28.09

30.97

32.07

35.45

39.95

Cu

Zn

31

Ga

32

Ge

33

As

34

Se

35

Br

36

Kr

Calcium

Scandium

Titanium

Vanadium

Iron

Cobalt

Nickel

Copper

Zinc

Gallium

Germanium

Arsenic

Selenium

Bromine

Krypton

39.10

40.08

44.96

47.87

50.94

52.00

54.94

55.85

58.93

58.69

63.55

65.39

69.72

72.61

74.92

78.96

79.90

83.80

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Rubidium

Strontium

Yttrium

Zirconium

Niobium

85.47

87.62

88.91

91.22

92.91

Rb Cs

Sr 56

Ba

Y

Zr

57

La

72

Hf

Nb 73

Ta

Chromium Manganese

14 4A 6

B

Average atomic mass*

He

13 3A 5

Potassium

55

6

Key

12

Mg

18 8A 2

“Tritium” (hydrogen)

Be

Lithium

11

3

2 2A 4

California Standards Test

Mo

Tc

Ru

95.94

(98)

101.07

76

77

Molybdenum Technetium Ruthenium

74

W

75

Re

Os

Rh

Rhodium

Pd

Palladium

Ag Silver

102.91

106.42

107.87

78

Ir

Au Gold

196.97

Cesium

Barium

Lanthanum

Hafnium

Tantalum

Tungsten

Rhenium

Osmium

Iridium

Platinum

132.91

137.33

138.91

178.49

180.95

183.84

186.21

190.23

192.22

195.08

87

88

89

104

105

106

107

108

109

Fr

Ra

Ac

Rf

Db

Sg

Bh

Hs

Radium

Actinium

Rutherfordium

Dubnium

Seaborgium

Bohrium

Hassium

Meitnerium

(223)

(226)

(227)

(261)

(262)

(266)

(264)

(269)

(268)

58

Ce

* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

Cerium

59

Pr

Praseodymium

60

61

Antimony

Tellurium

Iodine

Xenon

118.71

121.76

127.60

126.90

131.29

82

83

Bi

62

84

Po

85

At

63

64

Mercury

Thallium

Pb Lead

Bismuth

Polonium

Astatine

Radon

200.59

204.38

207.2

208.98

(209)

(210)

(222)

65

Iodine

66

Terbium

Dysprosium

Holmium

Erbium

Thulium

Ytterbium

Lutetium

157.25

158.93

162.50

164.93

167.26

168.93

173.04

174.97

93

94

95

96

97

98

99

100

101

102

103

Thorium

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

232.04

231.04

238.03

(237)

(244)

(243)

(247)

Am

Cm

Bk

Cf

Es

Berkelium Californium Einsteinium

(247)

(251)

(252)

Fm

Md

Fermium

Mendelevium

(257)

(258)

Yb

71

Gadolinium

Pu

Tm

70

151.96

Np

Er

69

Europium

U

Ho

68

150.36

92

Dy

67

(145)

91

Tb

Rn

144.24

Neodymium Promethium Samarium

Gd

86

Tl

Uranium and Plutonium Eu

Xe

Sm

90

Copyright © 2008 California Department of Education

Tin

114.82

81

I

Pm

140.91

Pa

Indium

112.41

80

Te

Nd

140.12

Th

Cadmium

Sn

Hg

Sb

54

In

Mt

Francium

Cesium

79

Pt

Cd

No

Lu Lr

Nobelium Lawrencium

(259)

(262)

6

12.0107 0.033% 2 3

Boron

5 2 2

Be

230 keV 0+

+2+4-4

B7

10.811 -8 6.9#10 %

Be6

2p

2.38#10 %

Different elements

2 1

Lithium 3 2

Helium 2 1

H

-259.34° -252.87° -240.18°

Hydrogen 1 1.00794 +1-1

91.0%

180.5° 1342°

Li

Li4

+1

2-

6.941 1.86#10 -7%

He

Li5

1.5 MeV 3/2p

-272.2° -268.93° -267.96°

0

He3

He4

1/2+

0+

4.002602 8.9%

0.000137

H1

H2

1/2+

1+

99.985

0.015

n1

614.8 s 1/2+ !-

H3

2p"

Be8

Li7

1+

3/2-

7.5

92.5

He5

0.60 MeV 3/2-

H4

H5

2-

!-

2

19.9

80.1

Li8

He7

160 keV (3/2)-

Be12

23.6 ms 0+ !-

Li10

Li11

8.5 ms 3/2-

1.2 MeV n

!-n,!-2n,...

He9

He10

0.30 MeV (1/2-) n

6

4

Different isotopes Ben Monreal, UCSB Physics 3/11

!-n

13.81 s 1/2+

Li9

He8

B13

17.36 ms 3/2-

Be11

178.3 ms 3/2-

!-n

H6

!-3"

!-"

119.0 ms 0+

!-

B12

Be10

!-

5730 y 0+

20.20 ms 1+

1.51E+6 y 0+

!-n

!-2"

n

!-

1.10

3/2-

838 ms 2+

He6

98.90

3+

3/2-

806.7 ms 0+

1/2-

B11

100

Li6

0+

B10

Be9

6.8 eV 0+ 2"

99.999863 n 12.33 y 1/2+

EC

B9

53.29 d 3/2EC

20.39 m 3/2-

0.54 keV 3/2-

Be7

92 keV 0+

+2

-9

770 ms 2+ EC2"

Be5

Beryllium 4 9.012182

B8

1.4 MeV (3/2-)

+3

1287° 2471°

19.255 s 0+

ECp,ECp2",... EC

2075° 4000°

B

126.5 ms (3/2-)

http://nndc.lbl.gov

0.3 MeV 0+ n

8

6

12.0107 0.033% 2 3

Boron

5 2 2

Be

230 keV 0+

+2+4-4

B7

10.811 -8 6.9#10 %

Be6

2p

2.38#10 %

Different elements

2 1

Lithium 3 2

Helium 2 1

H

-259.34° -252.87° -240.18°

Hydrogen 1 1.00794 +1-1

91.0%

180.5° 1342°

Li

Li4

+1

2-

6.941 1.86#10 -7%

He

Li5

1.5 MeV 3/2p

-272.2° -268.93° -267.96°

0

He3

He4

1/2+

0+

4.002602 8.9%

0.000137

H1

H2

1/2+

1+

99.985

0.015

n1

614.8 s 1/2+ !-

H3

2p"

Be8

Li7

1+

3/2-

7.5

92.5

He5

0.60 MeV 3/2-

H4

H5

2-

!-

2

19.9

80.1

Li8

He7

160 keV (3/2)-

Be12

23.6 ms 0+ !-

Li10

Li11

8.5 ms 3/2-

1.2 MeV n

!-n,!-2n,...

He9

He10

0.30 MeV (1/2-) n

6

4

Different isotopes Ben Monreal, UCSB Physics 3/11

!-n

13.81 s 1/2+

Li9

He8

B13

17.36 ms 3/2-

Be11

178.3 ms 3/2-

!-n

H6

!-3"

!-"

119.0 ms 0+

!-

B12

Be10

!-

5730 y 0+

20.20 ms 1+

1.51E+6 y 0+

!-n

!-2"

n

!-

1.10

3/2-

838 ms 2+

He6

98.90

3+

3/2-

806.7 ms 0+

1/2-

B11

100

Li6

0+

B10

Be9

6.8 eV 0+ 2"

99.999863 n 12.33 y 1/2+

EC

B9

53.29 d 3/2EC

20.39 m 3/2-

0.54 keV 3/2-

Be7

92 keV 0+

+2

-9

770 ms 2+ EC2"

Be5

Beryllium 4 9.012182

B8

1.4 MeV (3/2-)

+3

1287° 2471°

19.255 s 0+

ECp,ECp2",... EC

2075° 4000°

B

126.5 ms (3/2-)

http://nndc.lbl.gov

0.3 MeV 0+ n

8

Z=0-28 Part 1 of 2

24 23

Vanadium Titanium

22

Scandium

20

Calcium

18 17

Chlorine Sulfur

16

Phosphorus Silicon

14 13

Aluminum Magnesium

12

Sodium

11 2 8

Neon

10 2 7

Fluorine

9 2 6

Oxygen Nitrogen

7 2 4

Carbon

6

Boron

5

Beryllium 4 Lithium

Different elements

1

H

1

+1-1

1.00794 91.0%

EC2"

Be5

Be6

Li4

+1

53.29 d 3/2EC

2-

He3

0

1/2+

4.002602 8.9%

0.000137

H1

H2

1/2+

1+

99.985

0.015

n1

614.8 s 1/2+ !-

19.9

80.1

Be10

7.5

92.5

He6

1+

0+

0.60 MeV 3/2-

99.999863 n

H3

!-2"

He7

806.7 ms 0+

160 keV (3/2)n

!-

H4

Li8

838 ms 2+

3/2-

H5

2-

!-

2

3/2100

He5

12.33 y 1/2+

3+

Li7

1+

0.366

C13

C14

3/2-

!-

!-"

n

He8

119.0 ms 0+

6

!-"

Li11

8.5 ms 3/2!-n,!-2n,...

He9

!-n

!-

N18

!-n

B15

!-n

B16

2.25 s 0+

10

He10

0.3 MeV 0+ n

8

4

Different isotopes

Ben Monreal, UCSB Physics 3/11

12

301 ms 5/2+

197 ms 0+

!-n

B19

14

Mg31

Mg32

230 ms

!-n

Na29

48 ms 2+

!-n,!-2n,...

Ne28 17 ms 0+

!-n

120 ms 0+

!-n

Na30

44.9 ms 3/2

N22

24 ms

F27

O24

O25

O26

!-n

N23

C21

C22 0+

16

N24

P36

0.78 s

60 ms

Mg33 90 ms

Na32

!-n,!-2n,...

F29

0+

Si36 0.45 s 0+

18

20

83.79 d 4+ !-

*

Ca45

32.9 y 0+

K44

Ar43

!-

!-

P38

Si37

Cl43 3.3 s

S41

8.8 s 0+

!-n

P39

0.16 s !-n

P40

260 ms !-n

Si38

Si39

0+

Ar45

P41

!-n

Cl44

434 ms

0+

Cl45

400 ms

P42

Si41

Ne31

Al35

150 ms

Al36

Al37

Al38

Mg35

Mg36

Mg37

Na34

Na35

Al39

!-n

Mg34 20 ms 0+

0+

!-n

Na33 8.2 ms

!-n,!-2n,...

Ne32 0+

22

5.5 ms

!-2n

1.5 ms

!-n

24

26

Ca50 13.9 s 0+

Ar47 700 ms

!-

!-

Cl46

7.0 s 0+

P43

K49

1.26 s (3/2+)

0+

28

0.57 0+

V58

V5

Ti54

Ti55

Ti56

Ti57

Ti5

Ar48

Ca52

10.0 s (3/2-)

4.6 s 0+

0+

0+

Sc54

Sc55

Sc56

Sc5

Ca53

Ca54

Ca55

Ca5

K50

K54

K5

472 ms (0-,1,2-)

K51

365 ms (1/2+,3/2+) !-n

Ar49

90 ms (3/2-,5/2-)

0+

Cl47

S46

P45

K52

105 ms !-n

Ar50

K53

30 ms (3/2+) !-n

Ar51

0+

Cl49

Cl50

S47

S48

S49

0+

30

32

10 ms !-n

Ar52 0+

Cl48

P46

0+

!-n

!-

!-n

!-n

Si42

Cr6 !-

V57

Sc53

Ca51

0+

P44

0.71 (5/2

V56

!-n

33 ms

Mn6 !-

0.74 s

!-

Cl51

!-n

S45

82 ms

*

Cr59

Cr58 !-

0+

8.2 s 3+

0+

223 ms

51 s 0+

V55

6.54 s (7/2-)

Sc52

!-n

!-n

!-n

S44

123 ms 0+ !-n

110 ms

6.8 s (2-)

Cr57

21.1 s 3/2-,5/2-,7/2-

!

Mn60

!-

!-

K48

!-

!-n

!-n

S43

220 ms

!-n

Si40

8.4 s 0+

!-

!-n

120 ms

Ca49

*

!

Mn59

4.6 s 3/2-,5/2-

!-

32.7 s (3/2)-

12.4 s (7/2)-

!-

8.718 m 3/2-

!-n

Ar46

21.48 s

!-n

S42

0.56 s 0+

17.50 s 1/2+ !-

!-

!-

S40 !-

0.64 s

Ar44

6.8 s

K47

105 s (2-)

11.87 m 0+

Cl42

Ca48

3.0 s 0+

!-

Sc51 *

5.94 m 0+

Ti53

1.7 m 0+

Sc50

Cr56

V54

!

Mn58 !-

!-

49.8 s 3+

Ti52 !-

0.187

!-

!-

Ti51

102.5 s 5+

Cr55

3.497 m 3/2-

!-

!

85.4 s 5/2-

!-

!-

V53

5.76 m 3/2!-

0.28

Mn57

!-

1.61 m 7/2!-

!-

6E+18 y 0+ !-,!-!-

K46

17.3 m 3/2+ !-

5.37 m (3/2,5/2)

38.4 s (1/2,3/2)+

S39

K45

22.13 m 2-

Cl41

Ca47

!-

!-

57.2 m 7/2!-

4.536 d 7/2-

0+ 0.004

!-

11.5 s (3/2,5/2,7/2)-

Ca46

162.61 d 7/2-

!-

43.67 h 6+ !-

!-

22.3 h 3/2+

Ar42

3.3492 d 7/2!-

!-n

Al34

!-n,!-2n,...

F28

Cl40

1.35 m 2-

!-n

!-

Si35

13.2 ms (3-,4-)

Ne30

0.2 s

2.31 s

*

!-

!-

P37

5.6 s

17.0 ms 3/2+

Ne29

Sc49

!-

!-

S38

170.3 m 0+ !-

!-n

Na31

!-

!-

F26

61 ms 0+

!-

!-n

!-

335 ms 0+

*

!-

Al33

Cl39

55.6 m 3/2+

S37

!-

!-

Sc48

Ar40

5.05 m 7/2-

2.77 s 0+

Sc47

Ar39

!-

Si34

Al32 33 ms 1+

Mg30

F25

59 ms

!-n

B18

!-

!-n

32 ms

!-

Sc46

6.7302

P35

6.18 s

Sc45

0.0117

47.3 s 1/2+

Si33

Al31

!-

Ne27

P34

!-

!-

Na28

0.02 12.43 s 1+

644 ms (3/2,5/2)+

1.30 s 3/2+

30.5 ms 1+

!-

0+

K43

Cl38

Ti50

V52

3.743 m 3+

7/2-

5.4

K42

Ar41

99.750

5.5

Ca44

109.34 m 7/2-

V51

0.250

7/2-

K41

!-

0+ 2.365

2.2

Mn56

2.5785 h 3+

Cr54

3/2-

Ti49

100

Cr53 9.501

V50

1.4E+17 y 6+ EC,!-

100

0+

0+

K40

0+

330 d 7/2-

5/2-

83.789

73.8

0+

99.600

V49

Mn55

312.3 d 3+

Cr52

Ti48

7/2-

12.360 h 2-

Cr51

91.72

Mn54 EC,!-

7.3

2.086

!-

EC

5/2-

7/2-

3/2+

*

0+

*

Ca43

EC

EC

Mn53

3.74E+6 y 7/2-

8.0

0.135

37.24 m 2-

0+

3.927 h 2+ EC

V48

Ti47

5.591 d 6+

1.8E+17 y 27.702 d 0+ 7/2ECEC EC 4.345

15.9735 d 4+

Ti46

0+

269 y 7/2-

S36

87.51 d 3/2+

172 y 0+

Mg29

!-n

Ne26

!-n

C20

14 ms 0+

3.60 s 3+

24.23

S35

Sc44

EC

5.8

Mn52

46.2 m 5/2-

EC

0.647

!-

3/2+

EC,!-

Ti45

Ca42

1.277E+9 y 4EC,!-

Cl37

V47

32.6 m 3/2-

EC

Mn51

Cr50

42.3 m 5/2-

EC

184.8 m 7/2-

3.891 h 7/2-

Ca41

*

EC

EC

1.03E+5 y 7/2-

0+ 0.063

Cl36

*

EC

Ar38

3.01E+5 y 2+

Si32 !-

Al30

!-

Na27

Ar37

!-n

O23

82 ms !-n

N21

85 ms

!-

!-

!-n

F24

0.34 s (1,2,3)+ !-

O22

!-n

C19

46 ms

602 ms (1/2,3/2)+

!-

93.2581

35.04 d 3/2+

P33

Si31

3/2+

*

EC

25.34 d 1/2+

157.3 m 3/2+

20.91 h 0+

!-n

Ne25

!-

!-

N20

1.072 s 3+

!-

Mg28 !-

Na26

F23

!-

100 ms

!-

!-

2.23 s (3/2,5/2)+

!-n

Be14

4.35 ms 0+ !-n,!-2n,...

Li12

3.38 m 0+

3.10

P32

14.262 d 1+

Al29

9.458 m 1/2+

!-

Ne24

3.42 s (1/2,3/2,5/2)+

!-n

B17

5.08 ms (3/2-)

!-

O21

4.21

6.56 m 5/2+

Mg27

59.1 s 5/2+

!-

F22

4.23 s 4+,(3+)

!-n

C18

95 ms 0+

200 Ps (0-) n

!-

!-n

C17

10.5 ms

!-

!-

N19

0.304 s (1/2-)

193 ms

*

0.75

100

!-

0+ 11.01

Na25

!-

O20

13.51 s 0+

624 ms 1!-n,!-",...

!-n

Be13

!-

C16

B14

!-

O19

0.747 s 0+

13.8 ms 2-

9.25

F21

4.158 s 5/2+

26.91 s 5/2+

0+ 0.200

C15

0.9 MeV (1/2,5/2)+

!-

N17

5/2+

37.24 s 5/2+

95.02

0+

10.00

Ne23

0+

1/2+

Na24

!-

3/2+

0+

4.67

75.77

0+

1/2+

Al28

3/2+

*

S34

Si30

2.2414 m 3+

Cl35

S33

Si29

100

Cl34

K39

7.636 m 3+

0+ 0.337

1.5264 s 0+

0+ 96.941

V46

Sc43

681.3 ms 0+ EC

Ca40

K38

Ar36

1.775 s 3/2+

EC

Ca39

859.6 ms 3/2+

EC

S32

P31

EC

5/2+

14.9590 h 4+

0+

0.27

4.173 s 1/2-

2.449 s 1/2+

n

!-

0.30 MeV (1/2-) n

5/2+

!-

Be12

23.6 ms 0+

3/2+

F20

1/2+ 100

!-

!-n

Li10

3/2+

11.00 s 2+

O18

0.038

B13

1.2 MeV

0+

N16

17.36 ms 3/2-

13.81 s 1/2+

Li9

!-n

!-

Be11

178.3 ms 3/2-

!-n

H6

!-3"

1.51E+6 y 0+

Ne22

F19

7.13 s 2-

5730 y 0+

1/21.10

Ne21

90.48

O17

1/2-

99.634

B12

Ne20

P30

Mg26

Ar35

Cl33

Si28

*

596.3 ms 7/2-

Sc42

Cr49

21.56 h 0+

422.37 ms 0+

63 y 0+

EC

*

EC

EC

EC

Ti44

509 ms 7/2EC

Sc41

EC

1.226 s 3/2+

EC

2.511 s 3/2+

2.498 m 1+

92.23

Mg25

182.3 ms 4-

K37

342 ms 2+

Ar34

2.572 s 1/2+

440 ms 0+

EC

K36

844.5 ms 0+

S31

Ca38

Ca37

ECp,EC",... EC

EC

EC

Al27

Sc40

V45

547 ms 7/2-

EC

Mn50

283.88 ms 0+

Cr48

500 ms 3/2-

EC

EC

Ti43

199 ms 0+ EC

382 ms 5/2-

Cr47

0.26 s 0+

*

EC

Mn49

ECp,EC",... EC

EC

V44

90 ms (2+) EC"

Ti42

80 ms 3/2+

ECp

Sc39

181.1 ms 3/2+

190 ms 3/2+

Cl32

P29

Al26

78.99

Na23

Sc38

K35

298 ms 1+

4.140 s 1/2+

7.4E+5 y 5+

V43

ECp

Mn48

158.1 ms 4+

Cr46

50 ms

800 ms (7/2-)

Ti41

50 ms 0+

EC

ECp

ECp,EC",... EC

EC

4.16 s 5/2+

0+

EC

Na22

EC

N15

20.20 ms 1+

11.317 s 3/2+

Ar33

173.0 ms 1/2+

1.178 s 0+

Si27

EC

2.6019 y 3+

F18

102 ms 0+

ECp

K34

S30

P28

Mg24

22.49 s 3/2+

109.77 m 1+

99.762

N14

0+

EC

100

17.22 s 1/2+

0+

EC

98.90

*

Ca36

50 ms

Cl31

EC

Al25

7.183 s 5/2+

Ti40

26 ms (3/2+)

Sc37

Ca35

ECp

ECp,EC",... EC

EC

Ti39

ECp

ECp

ECp,EC",... EC

150 ms

270.3 ms 3+

2.234 s 0+

Mg23

Na21

Ne19

O16

98 ms 0+

187 ms 5/2+

Si26

Al24

2.053 s 4+ EC"

EC

EC

EC

122.24 s 1/2-

B11

ECp

220 ms 5/2+

3.857 s 0+

Na20

F17

O15

C12

P27

Si25

Mg22

447.9 ms 2+

64.49 s 5/2+

Ar32

ECp

260 ms 1/2+

ECp

ECp

122 ms (3/2,5/2)+

1672 ms 0+

F16

EC

125 ms 0+

EC"

40 keV 0-

N13

S29

P26

0.47 s

Mg21

Ne18

109.2 ms 1/2-

S28

20 ms (3+)

Al23

70 ms

ECp

p

S27

21 ms

102 ms 0+

Al22

Na19

Ne17

9.965 m 1/2-

Be9

He4

p

-272.2°

He -268.93° -267.96°

EC

Be8

2"

Na18

70.606 s 0+

B10

Li6

95 ms 0+

24.3050 0.00350% ECp

p

EC

Li5

1.5 MeV 3/2-

Mg20

+2

O14

B9

Si24

ECp

650° 1090°

ECp,EC",... EC

p

20.39 m 3/2-

Si23

ECp

Al21

+3

F15

C11

6.8 eV 0+

660.32° 2519°

26.981538 0.000277%

1.0 MeV (1/2+)

N12

2p"

Mg

2p

11.000 ms 1+

0.54 keV 3/2-

Be7

92 keV 0+ 2p

180.5° 1342°

6.941 1.86#10 -7% 2

-259.34° -252.87° -240.18°

Hydrogen

+3

+2

Li

B8

770 ms 2+

2 8 2

122 keV 0+

8.58 ms (3/2-)

19.255 s 0+

ECp,ECp2",... EC

B7

1.4 MeV (3/2-)

10.811 -8 6.9#10 %

1287° 2471°

126.5 ms (3/2-)

Al

Ne16

(2-)

EC3"

6 ms 0+

Ar31

V42

100 ms

Cr45

53 ms 0+

EC

(7/2-)

K33

15.1 ms

Cl30

ECp

Si22

Sc36

EC2p

ECp,EC2p,...ECp

21 ms (3/2+)

ECp

Mn47

41 ms

Cr44

Cr43

ECp,EC",... ECp

V41

ECp

ECp

Cl29

Cr42

V40

ECp

Mn46 ECp

+2+3+6

0+

+1

Cl28

1907° 2671°

51.9961 0.000044%

Ti38

47.867 -6 7.8#10 %

ECp

Mn45

+2+3+4+5

0+

K32

Mn44

50.9415 -7 9.6#10 %

+2+3+4

Ca34

+2

1246° 2061°

+2+3+4+7

54.938049 0.000031%

+3

40.078 0.000199%

Ar30

Cr

1910° 3407°

V

1668° 3287°

Ti

39.0983 0.0000123%

-189.35° -185.85° -122.28°

ECp,EC2p,...ECp

P25

2 8 11 2

2 8 13 1

Mn

44.955910 1.12#10 -7%

ECp

S26

P24

2 8 10 2

1541° 2836°

Sc

842° 1484°

35.4527 0.000017%

32.066 0.00168%

28.0855 0.00326% ECp 2 8 3

0

Ca

63.38° 759°

K

39.948 0.000329%

-101.5° -34.04° 143.8° +1+5+7-1

115.21° 444.60° 1041° +4+6-2

44.15° 280.5° 721°

Ar

Cl

S

+1

O13

C10

+3+5-3

2 8 7

2 8 8

30.973761 0.000034%

+2+4-4

22.989770 0.000187%

-248.59° -246.08° -228.7°

ECp

N11

740 keV 1/2+

P

1414° 3265°

Si

97.80° 883°

Na

F14

0.40 MeV 0+ 2p

2 8 1

20.1797 0.0112%

O12

C9

230 keV 0+

2075° 4000°

9.012182 2.38#10 -9% 2 1

3

Helium2

Be

-1

p

C8

0

18.9984032 2.7#10 -6% p

N10

14.00674 0.0102%

12.0107 0.033%

B

15.9994 0.078%

-210.00° -195.79° -146.94° ±1±2±3+4+5

4492t° 3642s°

C

-2

N

+2+4-4

2 3

2 2

8 2 5

-218.79° -182.95° -118.56°

O

Ne

-219.62° -188.12° -129.02°

F

15 2 8 4

2 8 5

2 8 6

2 8 8 1

19

Potassium Argon

2 8 9 2

21 2 8 8 2

ECp

0.00294% 2 8 13 2

25

34

Ar53

3

Different elements Different isotopes

Ben Monreal, UCSB Physics 3/11

The reactor’s job is to turn U into fission products. 95% of reactor power comes from the fission events themselves. 5% comes from the later fission product decays.

n o i Fiss

Different elements

The products include many different elements.

b a t S

Different isotopes

Ben Monreal, UCSB Physics 3/11

Uranium & Plutonium

s e p o t o s le i s t c u d o pr

Fission

While it’s running, the reactor’s neutrons can undergo side reactions that make more unstable elements in the fuel ... and in other materials.

Neutron capture Uranium & Plutonium on fuel Minor Actinides

b a t S

Different elements

n o i Fiss

Different isotopes

s e p o t o s le i s t c u d o pr

Neutron capture on water, air, reactor materials Induced radioactivity

Ben Monreal, UCSB Physics 3/11

Fission

Radiation damage Alpha decay: common in minor actinides (damages every 10th atom it passes.) Beta & gamma decay: fission products (damages every 3000th atom it passes.) Ben Monreal, UCSB Physics 3/11

222Rn

14C

→ 218Po + 4He

→ 14N + e- + ν http://education.jlab.org

How much damage? • • • •

One becquerel = 1 decay per second One curie = 37 billion decays per second. A measure of amount, as in “There are 20 million curies of 137Cs in the fuel pond”



One gray = absorbing 1 billion 238U decays, or 10 billion 137Cs decays, per gram of body mass One sievert = absorbing 0.05B 238U decays, or 10B of 137Cs, per gram of body mass A measure of “dose” = fraction of body’s chemical bonds damaged.



For fission products, gray = sievert Ben Monreal, UCSB Physics 3/11

Radiation numeracy •

You are all getting irradiated right now.

• natural

40K

• natural

222Rn

Natural backgrounds vary; 1.5 - 7 mSv/y

in your body: ~0.2 mSv/yr. in the air:

~1 mSv/yr.

• Moving to Denver? Add ~1 mSv/yr.

• Are you a flight attendant? Add ~few mSv/yr.

Lesson: a few milliSieverts dose is not worth worrying about at all. (but mSv/h rate can add up.) Ben Monreal, UCSB Physics 3/11

“Chernobyl Record” R.F. Mould, IOP 2000

Radiation and cancer (rarely) Ionization ≈ DNA damage DNA damage ≈ changed cells (rarely) (rarely) changed cells ≈ cancer Type of cancer

Extra cases per 10000 people with 1000mSv doses

Leukemia Breast

3

Stomach

5

Colon

2

Lesson: 1 Sv = 1000 mSv is a risk you would go out 7 Thyroid 1.6 of your way to avoid, Lung like texting while driving. 4

Ben Monreal, UCSB Physics 3/11

From John D. Boice, Natl. Cancer Institute in “Health Effects from Exposure to Low-Level Ionizing Radiation”, IOP 1996

Acute radiation sickness •

Lesson: >5 Sv = run for your life

Extraordinarily rare. “Slotin Incident”: 21 Sv, victim died 9 d later “Daghlian incident”: 5 Sv, victim died 1 month later Goiania accident: 5 Sv/hr medical source got loose. 4 dead (all > 5 Sv), 15 hospitalized (all betwen 0.5 and 5 Sv). Chernobyl first-responders: dose rates of 10 Sv/hr in many areas; 30 dead, 200 hospitalized Many victims of Hiroshima and Nagasaki

• • • • •

Ben Monreal, UCSB Physics 3/11

Units in the news Last Defense at Troubled Reactors: 50 Japanese Workers Published: March 15, 2011 Radiation close to the reactors was reported to reach 400 millisieverts per hour on Tuesday after a blast inside reactor No. 2 and fire at reactor No. 4, but has since dropped back to as low as 0.6 millisieverts at the plant gate.

← we know 5000 mSv = fatal so 400 mSv/hr for would be fatal if you had 5000/400 = 12 hours ← 0.6 mSv per hour 1000 mSv = texting while driving 1000/0.6 = two months

Radiation levels on the edge of the plant compound briefly spiked at 8217 microsieverts per hour but later fell to about a third that.

Ben Monreal, UCSB Physics 3/11

← 8000 µSv/hr = 8 mSv/hr

They meant “millisieverts NYTimes.com per hour”

Ben Monreal, UCSB Physics 3/11

Are low doses proportionally dangerous? •

Probably?? There is no case where a small extra risk was detectable. (Chernobyl area: thyroid cancer at 100 mSv)

added cancer rate

added cancer rate ??

dose

1mSv 100mSv 1Sv 2Sv Fukushima? Ben Monreal, UCSB Physics 3/11

?? ?? years since dose

“Health effects of low-level exposure to ionizing radiation”, ed. Hendee & Edwards, 1oP 1996

What’s getting out? What’s getting out? Minor Actinides

Uranium & Plutonium

b a t S

Different elements

n o i Fiss

Different isotopes

Induced radioactivity

Ben Monreal, UCSB Physics 3/11

s e p o t o s le i s t c u d o pr

Chemistry Reference Sheet

Periodic Table of the Elements 1 1A 1 1

H

Hydrogen

1.01

3

2

Li

9.01

Magnesium

22.99

24.31

5

7

Na Sodium

22.99

3 3B 21

Sc

4 4B 22

5 5B 23

Ti

V

6 6B 24

7 7B 25

8 26

Cr

Mn

Fe

15 5A 7

16 6A 8

17 7A 9

Boron

Carbon

Nitrogen

Oxygen

Fluorine

Neon

10.81

12.01

14.01

16.00

19.00

20.18

14

15

16

9 8B 27

Co

13

10 28

Ni

11 1B 29

Al

C

Si

N P

O S

F

17

Cl

Helium

4.00

10

Ne 18

Ar

12 2B 30

Aluminum

Silicon

Phosphorus

Sulfur

Chlorine

Argon

26.98

28.09

30.97

32.07

35.45

39.95

Cu

Zn

31

Ga

32

Ge

33

As

34

Se

35

Br

36

Kr

Calcium

Scandium

Titanium

Vanadium

Iron

Cobalt

Nickel

Copper

Zinc

Gallium

Germanium

Arsenic

Selenium

Bromine

Krypton

39.10

40.08

44.96

47.87

50.94

52.00

54.94

55.85

58.93

58.69

63.55

65.39

69.72

72.61

74.92

78.96

79.90

83.80

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Rubidium

Strontium

Yttrium

Zirconium

Niobium

85.47

87.62

88.91

91.22

92.91

Rb Cs

Sr 56

Ba

Y

Zr

57

La

72

Hf

Nb 73

Ta

Chromium Manganese

14 4A 6

B

Average atomic mass*

He

13 3A 5

Potassium

55

6

20

Ca

Atomic number Element symbol Element name

11

12

Mg

Sodium

K

Key

Be

Beryllium

19 4

2 2A 4

6.94

Na

18 8A 2

Induced radioactivity

Lithium

11

3

California Standards Test

Mo

Tc

Ru

95.94

(98)

101.07

76

77

Molybdenum Technetium Ruthenium

74

W

75

Re

Os

Rh

Rhodium

Pd

Palladium

Ag Silver

102.91

106.42

107.87

Ir

78

Au Gold

196.97

Barium

Lanthanum

Hafnium

Tantalum

Tungsten

Rhenium

Osmium

Iridium

Platinum

137.33

138.91

178.49

180.95

183.84

186.21

190.23

192.22

195.08

87

88

89

104

105

106

107

108

109

Ra

Ac

Rf

Db

Sg

Bh

Hs

Radium

Actinium

Rutherfordium

Dubnium

Seaborgium

Bohrium

Hassium

Meitnerium

(223)

(226)

(227)

(261)

(262)

(266)

(264)

(269)

(268)

58

* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

Cerium

59

Pr

Praseodymium

60

61

Tellurium

Iodine

Xenon

121.76

127.60

126.90

131.29

83

Bi

84

Po

85

At

86

Mercury

Tl

Thallium

Pb

Rn

Lead

Bismuth

Polonium

Astatine

Radon

200.59

204.38

207.2

208.98

(209)

(210)

(222)

62

63

Gd

65

67

68

69

70

71

minor actinides

Europium

Gadolinium

Terbium

Dysprosium

Holmium

Erbium

Thulium

Ytterbium

Lutetium

(145)

150.36

151.96

157.25

158.93

162.50

164.93

167.26

168.93

173.04

174.97

93

94

95

96

97

98

99

100

101

102

103

91

92

Thorium

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

232.04

231.04

238.03

(237)

(244)

(243)

(247)

U

Np

Ben Monreal, UCSB Physics 3/11

Pu

Am

Cm

Tb

66

144.24

Neodymium Promethium Samarium

Eu

64

Sm

90

Copyright © 2008 California Department of Education

Antimony

118.71

82

Xe

Pm

140.91

Pa

Tin

114.82

81

I

Nd

140.12

Th

Indium

112.41

80

Te

Mt

Francium

Ce

Cadmium

Sn

Hg

Sb

54

In

Fission products

Cesium

132.91

Fr

79

Pt

Cd

Bk

Dy Cf

Ho Es

Berkelium Californium Einsteinium

(247)

(251)

(252)

Er

Fm

Tm Md

Fermium

Mendelevium

(257)

(258)

Yb

No

Lu Lr

Nobelium Lawrencium

(259)

(262)

Chemistry Reference Sheet

Periodic Table of the Elements

California Standards Test

1 1A 1 1

H

Hydrogen

1.01

3

Li

2 2A 4

Key

Lithium

Beryllium

6.94

9.01

11

3

Na

Na Sodium

Sodium

Magnesium

22.99

24.31

19

4

5

K

7

20

Ca

3 3B 21

Sc

4 4B 22

5 5B 23

Ti

V

6 6B 24

7 7B 25

8 26

Cr

Mn

Fe

15 5A 7

16 6A 8

17 7A 9

Boron

Carbon

Nitrogen

Oxygen

Fluorine

Neon

10.81

12.01

14.01

16.00

19.00

20.18

14

15

16

9 8B 27

Co

13

10 28

Ni

11 1B 29

Al

C

Si

Gases

N P

O S

F

17

Cl

Helium

4.00

10

Ne 18

Ar

12 2B 30

Aluminum

Silicon

Phosphorus

Sulfur

Chlorine

Argon

26.98

28.09

30.97

32.07

35.45

39.95

Cu

Zn

31

Ga

32

Ge

33

As

34

Se

35

Br

36

Kr

Calcium

Scandium

Titanium

Vanadium

Iron

Cobalt

Nickel

Copper

Zinc

Gallium

Germanium

Arsenic

Selenium

Bromine

Krypton

39.10

40.08

44.96

47.87

50.94

52.00

54.94

55.85

58.93

58.69

63.55

65.39

69.72

72.61

74.92

78.96

79.90

83.80

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Rubidium

Strontium

Yttrium

Zirconium

Niobium

85.47

87.62

88.91

91.22

92.91

Rb Cs

Sr 56

Ba

Y

Zr

57

La

72

Hf

Nb 73

Ta

Chromium Manganese

14 4A 6

B

Average atomic mass*

He

13 3A 5

Potassium

55

6

22.99

12

Mg

Atomic number Element symbol Element name

11

Be

wat e solu r bl e

2

18 8A 2

Mo

Tc

Ru

95.94

(98)

101.07

76

77

Molybdenum Technetium Ruthenium

74

W

75

Re

Os

Rh

Rhodium

Pd

Palladium

Ag Silver

102.91

106.42

107.87

Ir

78

Pt

Cesium

Barium

Lanthanum

Hafnium

Tantalum

Tungsten

Rhenium

Osmium

Iridium

Platinum

132.91

137.33

138.91

178.49

180.95

183.84

186.21

190.23

192.22

195.08

87

88

89

104

105

106

107

108

109

Fr

Ra

Ac

Rf

Db

Sg

Bh

Hs

Actinium

Rutherfordium

Dubnium

Seaborgium

Bohrium

Hassium

Meitnerium

(223)

(226)

(227)

(261)

(262)

(266)

(264)

(269)

(268)

* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

Cerium

59

Pr

Praseodymium

60

Tellurium

Iodine

Xenon

121.76

127.60

126.90

131.29

80

Hg

61

81

82

83

84

85

Lead

Bismuth

Polonium

Astatine

Radon

208.98

(209)

(210)

(222)

204.38

At

86

207.2

Thallium

Po

Xe

Pb

200.59

Bi

I

Tl

Mercury

Rn

62

63

Gd

65

Gadolinium

Terbium

Dysprosium

Holmium

Erbium

Thulium

Ytterbium

Lutetium

151.96

157.25

158.93

162.50

164.93

167.26

168.93

173.04

174.97

93

94

95

96

97

98

99

100

101

102

103

Thorium

Protactinium

Uranium

Neptunium

Plutonium

Americium

Curium

232.04

231.04

238.03

(237)

(244)

(243)

(247)

Ben Monreal, UCSB Physics 3/11

Am

Cm

Bk

Cf

Es

Berkelium Californium Einsteinium

(247)

(251)

(252)

Fm

Md

Fermium

Mendelevium

(257)

(258)

Yb

71

Europium

Pu

Tm

70

150.36

Np

Er

69

(145)

U

Ho

68

144.24

92

Dy

67

Sm

91

Tb

66

Pm

Neodymium Promethium Samarium

Eu

64

Nd

90

Copyright © 2008 California Department of Education

Antimony

118.71

Gold

140.91

Pa

Tin

114.82

196.97

140.12

Th

Indium

112.41

79

Te

Mt

Radium

58

Cadmium

Sn

Au

Sb

54

In

Inert metals

Francium

Ce

Cd

No

Lu Lr

Nobelium Lawrencium

(259)

(262)

Healthy reactor: In Zircalloy casing: fuel + fission products + actinides In cooling water: activation products In steam: activation products In environment: practically nothing Ben Monreal, UCSB Physics 3/11

Meltdown: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: practically nothing Ben Monreal, UCSB Physics 3/11

Three-Mile Island

Meltdown + emergency venting: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: practically Xe, Kr,nothing Rn

Fukushima Daiishi 2

Meltdown + containment failure: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: Xe, Kr, Xe,Rn, Kr,Cs, Rn I, Tc

Meltdown + fuel fire ???

In Zircalloy casing: fuel + fission products + actinides In environment: fuel + fission products + actinides Briefly happened at Fukushima spent-fuel pools? (reports vary?) This is very bad but still not as bad as Chernobyl http://mitnse.com

Chernobyl no real “containment vessel” Core filled with graphite (fuel for huge fire) Reactor fissioning during explosions and fire (Fukushima reactors have now been “off” for 5 days) Ben Monreal, UCSB Physics 3/11

Ben Monreal, UCSB Physics 3/11

wikipedia

Saving graces at Fukushima • Reactor survived earthquake intact (!!!!!) • Shut down properly • First hour of containment saved factor of 5x • First day: factor 20x • Evacuation • Biggest fire risk is 100-

day-old spent fuel, i.e. 100x less radioactive than Chernobyl material

Ben Monreal, UCSB Physics 3/11

Nuclides to watch Nuclide

Half-life

Effect at Chernobyl

131Iodine

8 days

quick ~0.5 mSv dose to everyone in Eastern Europe

137Cesium

30 years

Additional ~1 mSv over 30y

90Strontium

30 years

Lower amount than Cs, but accumulates in bone

241Plutonium

9 years

Large doses near reactor site; easier to decontaminate

Ben Monreal, UCSB Physics 3/11

Cooper, Randle, and Sokhi, Wiley 2003

In case of fire ... soot Nuclide

Half-life

95Zirconium

60 days

99Molybdenum

141Cerium

3 days 40 days 30 days

140Barium

14 days

103Ruthenium



Worst concern to first responders. Weather may move soot plumes around (Chernobyl: bad plumes to 60km) • This is what the “stay indoors” advisories are talking about. Soot in your driveway doesn’t dose you; soot on your clothes does. • Can be cleaned from streets/buildings. Agriculture, fisheries have to wait it out (or remove top 10cm soil) Ben Monreal, UCSB Physics 3/11

Conclusions •

The worst general-public effects of Chernobyl were stress/fear; HUGE education/communication failure You have the information: count the millisieverts and decide how to respond My feeling: the worst-case radiation hazards from Fukushima are mitigatable and local (early evacuation + controls on 131I in food) My feeling: the global radiation hazard is nil. The best way to reduce worldwide low-level radiation releases is ... stop burning coal Save your energy for those affected by the tsunami and “50 plant workers” at Fukushima

• • • •

• •

Ben Monreal, UCSB Physics 3/11